본문 바로가기

728x90
반응형

전체 글

(315)
[복습] Python | 분석 | 감성분석(워드 클라우드) 쇼핑몰 후기 감성분석 전처리 및 워드 클라우드 시각화 1. 데이터 불러오기 2. 학습 데이터 선택 3. 전처리 regex = True는 Series 이므로 설정한 것 4. 기타 불용어 제거 고려 1) 한 글자 단어 목록 2) 빈도수가 1인 단어 목록 3) 추가 불용어 제거 고려 5. 워드 클라우드 생성 pip install wordcloud 1) 전체 워드 클라우드(긍정/부정 구분 없이, 명사, 형용사, 동사 모두 포함) 2) 명사에 대한 긍정 / 부정 워드 클라우드 작성 긍정 워드 클라우드 부정 워드 클라우드 워드 클라우드 시각화 끝
[복습] Python | 분석 | 감성분석 Intro 이미지와 영상은 픽셀 사이즈만 맞추면(영상은 프레임 단위로 쪼개는 것이 중요) 된다. 그리고 딥러닝 학습 시 입력값이 수치로 변환되어야 한다(output 또한 수치). 또한 딥러닝, 머신러닝에서 중요한 것은 데이터 품질관리이다. 모델링도 중요하지만 데이터 품질관리가 더 중요하다. 문장의 감성분석의 경우, 긍정/부정을 나누는 것은 분류모델로 모의한다. 인간이 직접 리뷰를 전부 읽고(평점이 있는 경우 긍/부정을 쉽게 구분할 수 있음), 긍정인지 부정인지의 라벨링 작업을 직접 진행하여야 한다. 즉 사람의 눈을 거치는 작업이 필요한 것이다. 평점이 1~5점이 있는 경우, 다섯 개의 라벨링을 거쳐야 한다. 1, 2 점을 부정, 3을 삭제, 4, 5는 긍정 등으로 Y 라벨링의 분석 목적에 맞게 구분할 수도 있다. ..
[복습] Python | 분석 | 딥러닝(CNN) 이미지 분석(2) + 하루끝(20240402) CNN: 이미지 분석의 꽃 층을 추가할 수록 좋다. 레이어가 추가될수록 더 많은 신호를 받을수 있는 좋은 점이 있으나, 기울기 소실 문제는 해결되지 않는다. activation은 relu 가 좋은 편이다. 기울기 소실 문제를 해결하기 위한 다른 activation은 찾기 어려우므로, 다른 방법을 찾다 보니 CNN의 파생인 vgg 또는 resnet이 탄생했다. densenet, googlenet도 있다. 전부 CNN 기반 모델로, keras 문법으로 구현하는데에는 한계가 있어서 tensorflow로 구현해야 하는데, 복잡도가 증가하게 된다. 딥러닝 모형을 구현하는 데에 있어 두 가지 방법이 있다. 1. 제로 베이스에서 출발: 쌓은 탑이 없는 상태로, 처음부터 모델링한다. 가중치를 랜덤하게 초기에 선택해서 ..
[제품후기] 에고스페이스 스페이스보드 책상 파티션 철제 메모보드 클램프형 구매 최근 작업실을 마련하면서 책상에 메모보드 하나 두고 싶은 생각이 들어 괜찮은 제품이 없나 둘러보고 있었다.그러다가 오늘의집 에서 자석형 메모보드 발견하고 구입!   도착      개봉        부속품들도 개봉참고로 부속품들은 개별 구매 하여야 한다.    설치!클램프형으로 사서 이렇게 아래 부분을 조여서 고정      설치 완료.      부속품들도 부착 완료부속품들의 경우 포인트를 주기 위해서 다른 색상들도 판매를 하고 있으나 나는 그냥 메모보드 판과 같은 색으로 주문했다.        부속품 합친 총 금액   아직 아무것도 부착 안해서 잘은 모르겠으나 일단 공간 분리가 되어서 만족한다.책상 가로 사이즈랑도 딱 맞아서 마음에 듦.
[복습] Python | 분석 | 딥러닝(CNN) 이미지 분석 + 하루끝(20240401) input이 이미지가 될 수는 있으나 output이 이미지가 될 수는 없다(정형 데이터화되어 수치로 들어감). 딥러닝 구현으로 얻게 된 데이터 특성을 가지고 이미지를 찾아부는 검색 엔진까지 들어가야지 이미지가 출력된다. 1. KNN : 이미지를 비교할 때 픽셀 별 단순 차이만 가지고 거리를 계산한다. 어떤 픽셀이 보다 강조되어야 하는지 측정하기가 어려운 것이 단점이다. (이미지 유사도가 높은 = 거리가 짧은) 2. KNN + PCA: 변동성이 가장 많은 픽셀에 초점을 맞춰(PCA), 높은 가중치를 부여한 픽셀을 조합하여 인공변수를 만들어 거리를 계산하는 것이 효과적이어서 이렇게 보완되어 발전하였다. 인근 픽셀 유사도를 찾아야 하는데 머신러닝이므로 flatten 할 수밖에 없다. 위-아래 구성된 픽셀이 f..

728x90
반응형